
Contents lists available at ScienceDirect

European Journal of Radiology

journal homepage: www.elsevier.com/locate/ejrad

Review

The present and future of deep learning in radiology
Luca Sabaa, Mainak Biswasb, Venkatanareshbabu Kuppilib, Elisa Cuadrado Godiac,
Harman S. Surid, Damodar Reddy Edlab, Tomaž Omerzue, John R. Lairdf, Narendra N. Khannag,
Sophie Mavrogenih, Athanasios Protogeroui, Petros P. Sfikakisj, Vijay Viswanathank,
George D. Kitasl,m, Andrew Nicolaidesn,o, Ajay Guptap, Jasjit S. Suriq,⁎

a Department of Radiology, Policlinico Universitario, Cagliari, Italy
bNational Institute of Technology Goa, India
c IMIM – Hospital del Mar, Passeig Marítim 25-29, Barcelona, Spain
d Brown University, Providence, RI, USA
e Department of Neurology, University Medical Centre Maribor, Slovenia
f Cardiology Department, St. Helena Hospital, St. Helena, CA, USA
g Cardiology Department, Apollo Hospitals, New Delhi, India
h Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
iDepartment of Cardiovascular Prevention & Research Unit Clinic & Laboratory of Pathophysiology, National and Kapodistrian Univ. of Athens, Greece
j Rheumatology Unit, National Kapodistrian University of Athens, Greece
kMV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
l Arthritis Research UK Centre for Epidemiology, Manchester University, Manchester, UK
mDepartment of Rheumatology, Dudley Group NHS Foundation Trust, Dudley, UK
n Vascular Screening and Diagnostic Centre, London, UK
o Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
p Brain and Mind Research Institute and Department of Radiology, Weill Cornell Medical College, NY, USA
q Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA

A R T I C L E I N F O

Keywords:
Deep learning
Machine learning
Medical imaging
Radiology

A B S T R A C T

The advent of Deep Learning (DL) is poised to dramatically change the delivery of healthcare in the near future.
Not only has DL profoundly affected the healthcare industry it has also influenced global businesses. Within a
span of very few years, advances such as self-driving cars, robots performing jobs that are hazardous to human,
and chat bots talking with human operators have proved that DL has already made large impact on our lives. The
open source nature of DL and decreasing prices of computer hardware will further propel such changes. In
healthcare, the potential is immense due to the need to automate the processes and evolve error free paradigms.
The sheer quantum of DL publications in healthcare has surpassed other domains growing at a very fast pace,
particular in radiology. It is therefore imperative for the radiologists to learn about DL and how it differs from
other approaches of Artificial Intelligence (AI). The next generation of radiology will see a significant role of DL
and will likely serve as the base for augmented radiology (AR). Better clinical judgement by AR will help in
improving the quality of life and help in life saving decisions, while lowering healthcare costs.

A comprehensive review of DL as well as its implications upon the healthcare is presented in this review. We
had analysed 150 articles of DL in healthcare domain from PubMed, Google Scholar, and IEEE EXPLORE focused
in medical imagery only. We have further examined the ethic, moral and legal issues surrounding the use of DL
in medical imaging.
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1. Introduction

The idea of machine learning (ML) takes inspiration from the initial
work done on the cat’s visual cortex by Hubel and Wiesel [1]. The vi-
sual depiction of visual cortex was earlier thought to be a holistic
process, but was found to be hierarchical (explained later). This dis-
covery led to the foundation of artificial neural networks (ANNs) [2]
and subsequently deep learning [3]. In the Fig. 1, the human brain is
represented as a hierarchical network of neuron layers. The neurons do
the computation on input data from lower layer neurons and pass
output to other higher layer neurons through the network. There are
five basic layers of neurons: primary visual cortex (V1), secondary vi-
sual cortex (V2), V4, inferotemporal cortex (IT) posterior and IT-ante-
rior layer of neurons as shown in Fig. 1. The lower level neurons (shown
in Fig. 1) in the V1 detects basic features such as border line features of
objects or edges. The V2 neurons encode these elementary features into
junctions of lines to create basic visual features. The V4 layer neurons
detect more complex combinations of these features. The IT posterior
neurons detect and recognize entire object shapes (such as face) over a
wide range of locations, sizes, and angles as shown in Fig. 1. The IT-
anterior neurons form a more abstract or semantic meaning about the
visual information. The first worthwhile implementation of this
knowledge was in the form of weighted single-layer artificial neural
network called perceptron [4]. The perceptron is a single-layer network
capable of binary classification, such as low or high risk. It works by
drawing a boundary between the two classes of features. The process of
drawing boundary based on known examples (whose outputs are
known) is called training. It applies a greedy approach of finding the
first best-fitting boundary which separates the classes by changing the
weights of the neurons in the first layer in an iterative fashion. These
weights are just like the coefficients of linear equation (an equation in
which there are terms of degree one and having the coefficients to these
terms) which resolves by changing itself iteratively until it reaches the
solution point. It is reached if the error or the difference between the
desired and the actual output of the perceptron becomes zero for all
training samples. The accuracy is checked by testing the trained per-
ceptron on unknown examples (whose outputs are unknown). Note that
perceptron will succeed only when the two classes are linearly separ-
able [5]. For classes which are not linearly separable, the solution is
mapped to a non-linear separation by introducing a hidden layer be-
tween the input and output layers [6] (discussed later), also called
multi-layer perceptron (MLP). Other similar examples of single-layer
neural networks developed during this period were Radial Basis Neural
Network [7], Support Vector Machines [8], and Extreme Learning
Machine [9]. The learning laws used for training of single- or multi-
layer perceptron were categorized into two groups i.e., error correction
rules and gradient rules [10]. The error (between desired and actual
output) correction rules used is linear error measure to reduce error at
the output while in the gradient rules, the weights of a network were
altered with an objective of reducing mean-squared error. In this

regard, back propagation algorithm developed by Hinton et al. [11], is
an important landmark in the field of learning laws which had the
ability of quick generalization. In the field of radiology, the contribu-
tion of ML for classification of the disease severity and organ segmen-
tation (or segregation) has been significant. Examples of classification
framework include detection of fatty liver disease from liver ultrasound
images [12–14], or ovarian cancer detection and risk stratification from
ultrasound images [15–17], or stroke risk stratification using carotid
ultrasound [18,19]. Example of segmentation in radiological images
include: carotid artery segmentation from ultrasound images for carotid
intima-media thickness and lumen segmentation [20–22], plaque
characterization from CT images [23], brain segmentation from MR
images/volumes [24] and left ventricle segmentation [25] from MR
images.

Up to now, the strategy followed for image classification or seg-
mentation was similar: extract features from images using feature ex-
traction algorithm, selection of best features, if the number of features
are large, and then application of the machine learning algorithms to
transform the online features by the offline training coefficients to ei-
ther classify the tissues or delineate the components of the images as
part of segmentation. This effectively translates to the functionality and
processing of human brain's neural responses to the different visual
stimuli [26,27]. Experiments by Kay et al. [28] showed that Gabor [29]
filters or their variations can explain the responses of primary visual
cortex of human subjects but not further. This so happens because
neurons at lower levels respond to simple lines at different angles i.e.,
perceptron. As the number of hidden layers increases (the network
becomes Deeper), the higher level neurons respond to complex re-
lationships between features i.e., lines which are perpendicular to each
other. This also encompasses the hierarchical learning in a gist of the
visual cortex as already shown in Fig. 1.

An important milestone in transforming the machine learning to
deep learning was achieved by Krizhevsky et al. [30] during im-
plementation of ImageNet in 2012. The authors proposed a DL [31]
model i.e., AlexNet that achieved 15.2% top-5classification error (Err)
while segregating 1.2 million high-resolution images in 1000 different
classes. AlexNet was the first deep learning model (five layer deep
network (CNN) [31] (discussed later) to be applied in the ImageNet
challenge. Since then, the error has been reduced remarkably to 2.25%
recently ([32–36]) with the number of deep layers increasing each year.
Each DL model and their error rate are given in Table 1.In this review,
we have collected information on current research on DL applications
in several fields such as genomics, imaging and signal processing. In-
itially, we looked used the keyword “deep learning”, “convolution”,
“healthcare” using search engines such as Google Scholar, Science-
Direct, PubMed, SCOPUS and IEEE databases, however this search was
inconclusive as it opened up almost all deep learning related works. We
therefore modified our search terms to include image modalities such as
“MRI”, “CT”, “Ultrasound” etc and specific keywords such as “DNA
sequencing”, “gene”, etc. We segregated the relevant research outputs

Fig. 1. A neural network representation of human brain (image courtesy: https://grey.colorado.edu/CompCogNeuro/index.php/CCNBook/Perception).
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as per the type of modality i.e., “MRI”, “CT”, “DNA sequencing” etc.
Inside each segregated class, we further categorized each paper as their
organ or disease type. This search went on iteratively bimonthly. We
had collected over 150 articles during this process. We focused on
medical imagery in the deep learning paradigm for the review paper
and selected few papers published recently based on organ types to
assess the work done in various physiologies.”

There are several key differences between ML and DL methodolo-
gies. The DL methods learn high-level representations of the data using
multilayer computational models which are useful in organ segmenta-
tion or disease classification in images. Conventional models such as
ANNs require pre-processing and input clinical ground truth yielding
radiological feature extraction whereas, DL, allows the algorithm to
automatically learn features from raw and noisy data and therefore
helps in superior training and subsequently superior learning. It does so
by using the concepts of dimensionality reduction (compression of
images), non-linearity (variations in the intensity distribution).

DL optimizes feature engineering process to provide the software
classifier with the information that maximizes its performance with
respect to the final task leading to its superior training. DL models are
capable of extraction of highly complex, nonlinear dependencies from
raw data which is responsible for superior training. Due to increase in
volume of raw datasets, DL models can be used in jointly learning from
a combination of datasets, without worrying about the commonality or
discord of features. DL can be used for multi-task learning i.e., using the
same data for different purposes, such as, both disease classification and
organ segmentation [37]. The DL explains the neural response to visual
stimuli for the entire visual cortex of the human brain [38–40]. This
particular property enables DL models pre-trained on a particular
subject while to be tested on different subjects if the features of the
training and test subjects have similar cortical representation [41,42].
This particular feature of DL is also called Transfer Learning (TL) [43]
and is highly popular in ML and DL community [44–46]. In this regard,
a comprehensive review on DL applications in medical imaging was
recently attempted [47]. The review covers different kinds DL models
applied in different imaging modalities. Almost 300 articles have been
covered. However, an intrinsic understanding of the DL models applied
in medical imaging from the point of view of medical professionals is
lacking. In this review we have tried to address this issue in the next
subsection.

DL like ML can be categorized into two types: supervised and un-
supervised. Supervised learning deals with labelled data while un-
supervised learning deals with unlabeled data. The machine tries to
learn interrelationships between data elements. The most popular DL
supervised learning models are currently convolution neural networks
(CNN) and residual neural network (RNN). Deep Belief Networks (DBN)
and Autoencoders are most popular unsupervised learning models. CNN
has been used for both medical image characterization [48,49] and
segmentation [50,51]. RNNs have been used for characterization till
now [35]. Although DBN is used for unsupervised learning it has been
implemented for segmentation [52]. The DL model of autoencoder has
been used for both characterization [53,54] and segmentation [55,56].
This representation is diagrammatically shown in Fig. 2. CNN [31] is
the most popular DL model for medical imaging. It follows the same

principle of hierarchical feature learning of the visual cortex. However,
it uses convolution [57] filters in place of weights for its functioning.
This convolution operation is diagrammatically shown in Fig. 3. A
convolution filter is a matrix of weights which does a point-wise mul-
tiplication across the whole image to create neural map or feature map
of the image. The CNN applies several convolution filters to create
feature maps of the original image which represent its hidden layers.
These feature maps are down sampled representations of the original
image. Further, these feature maps are worked upon layer by layer to
extract high level features. From this point on we will call “hidden
layers" as "deep layers". Pooling is applied to these feature maps for
dimensionality reduction and extraction of important features. The
deep layers of CNN are shown in Fig. 4. This process is repeated
creating more deep layers and thus increasing the depth of the network.
Finally, an MLP is applied for disease classification This MLP is also
called a fully connected network (FCN) in the context of CNN. While the
entire body of CNN is related to features, extracted in form of feature
maps, the FCN is the final piece at the end of CNN where the classifi-
cation takes place. Initially the CNN along with FCN weights learn from
training data based on the ground truth information. The FCN takes the
deep features produced from the deep layers as input to produce the
classification output for test data. CNNs allow segmentation too. In the
case of segmentation, FCN is not used. The extracted features from the
last layers of CNN are either up sampled or the convolution process is
reversed to generate segmentation maps [58,59]. The flexibility of CNN
for both characterization and segmentation has made CNN the most
popular DL model. In this work, the DL application examples discussed
later are some form of CNN. Autoencoders [60] are a class of DL models
used for unsupervised learning of data where the target values are ac-
tually the inputs. There are two paths in an autoencoder: encoder and
decoder. The encoder compresses the image data while the decoder
expands it. There are several hidden layers for encoder and same
number of layers for decoder. Due to compression and expansion of the
image within the autoencoder, the intermediate hidden layers learn
complex interrelationships of pixels within an image. The learning of
this representation is useful while reconstructing images, clearing noise
from image or using it for segmentation or image registration. An ex-
ample of working is training the autoencoder to denoise a corrupted
input image (denoising autoencoder [61]). Residual neural network
(RNN) [35] is also gaining popularity in disease classification in radi-
ology images. An RNN functions by learning the extra residual features
between a high level and lower level deep layers. This helps in pre-
venting accuracy saturation even if network becomes deeper. Deep
Belief Network (DBN) [62] is another example unsupervised deep
neural network which is trained layer-by-layer to reduce reconstruction
error. The detailed working of each model is provided [63].

DL algorithms suffer from over-fitting and under-fitting. Over-fitting
happens if the input medical image used for training the DL is corrupted
or very noisy and the weights fit exactly to characterize the existing
training data and fail to characterize test data. In underfitting, the
training images does not cover entire spectrum and hence the training
of neurons does not generalize to identify test images. Over-fitting and
under-fitting leads to faulty training of the DL-based system. ML algo-
rithms too suffer from this phenomenon. One way is regularization
where a penalty term is added to the loss function to penalize terms of
high order and magnitude (outliers or noise) [64]. This reduces the
training error. DL systems generally apply dropout strategy where few
network connections are dropped to prevent over-fitting [31].

In the next few sections we will deal with present and future sce-
narios of DL in radiology, potentialities of DL in radiology, risks of DL,
and finally the conclusion.

2. The present state of deep learning-based radiology

Within a very short period of time, DL has taken center stage in the
field of medical imaging. In this portion we will review a sampling of

Table 1
DL models and their performances.

SN. Model Name Year Top-5 Err* (%)

1 AlexNet [31] 2012 15.3%
2 VGG16 [33] 2014 7.30%
3 GoogleNet [34] 2015 3.58%
4 ResNet [35] 2016 3.57%
5 Squeeze-and-Excitation [36] 2017 2.25%

* Top-5 error rate is the fraction of test images for which the correct label is
not among the five labels considered most probable by the mode.
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recent literature in DL as it applies to the practice of radiology. This
section gives an overview of different image modalities for different
organs of human body. We have provided one DL application in
Hepatology, Cardiology, Neurology, Urology and Pulmonology. They
are given as follows:

2.1. An application in Hepatology for Fatty liver disease risk stratification

In the past few years DL researchers have shown considerable in-
terest in stratification of liver diseases, segmentation of liver and liver
lesions from radiological images. In this regard, Hu et al. [65] proposed
DL model for segmentation of liver from CT images. Li et al. [66]
proposed a DL model for liver tumor segmentation from CT images.
This work was a significant step in diagnosis of liver cancer. Recently,
considerable research efforts has been applied in the area of classifi-
cation of liver diseases from radiological images. Fatty liver disease
(FLD) is one of the major causes of death among the USA adult popu-
lation (aged 45–54 years) [67]. Early diagnosis and treatment will save
countless lives over few years. In this respect Biswas et al. [68] devel-
oped a DL model for tissue characterization (TC) of FLD from liver

ultrasound images shown in Fig. 5. The DL model used for character-
ization is 22 deep layer-ed CNN with special layers called inception
layers [69].

The inception layer is a combination of multiple convolution filters
applied in a single layer (the convolution filters have been addressed
before while discussing CNN). Therefore, inception layer is used to
perform multiple convolution operations in a single layer which helps
in quick convergence and generalization without increasing depth and
complexity of the DL model. The accuracy achieved using the DL model
was 100% for 10- fold cross-validation.

2.2. Cardiology application for medial thickness segmentation and cIMT
measurement

Stroke or heart attack due to vascular atherosclerosis affects 10
million people worldwide, with fatalities accounting for five million
people [70]. In-time diagnosis and medication can mitigate the risk of
CVDs. In this respect, a two-stage DL-based system was proposed by
Biswas et al. [71] for cIMT measurement. The first stage DL is used for
feature extraction. It consists of 13 deep layers which extracts features

Fig. 2. Categorization of DL models and their applications in image characterization and segmentation.

Fig. 3. Convolution operation.
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from the images. However, unlike other CNN it does not apply FCN at
the end for classification. Instead, it uses upsample layers for the fea-
tures extracted from the first stage and upsample them in the second
stage.

These upsampled features [72] form the segmented output of the
original image. For this task, two radiologists were employed for tra-
cing lumen-intima (LI) and media adventitia (MA) borders. These tra-
cings form the gold standard of the experiment. The original images
were divided into two parts: 90% training and 10% testing. The training
images along with their gold standard was fed into the system for
training, twice: the first time for learning to segment the LI from the
tissue, the second time for learning to segment the MA wall. Once
learnt, the test images were segmented. The LI and MA borders were
delineated and cIMT was computed for the test images. For, this ex-
periment 396 B-mode ultrasound images of left and right carotid artery

was taken from 203 patients. The readings showed an overall im-
provement of 20% over the sonographer readings. The six sub-images
can be seen in Fig. 6, which show low, medium and high risk patients
demonstrate the working of the DL-based system. The red and green
lines correspond to the LI and MA border drawn by the DL-based system
and the corresponding yellow dotted lines denote the gold standard
tracings.

2.3. Neurological application for effective treatment in MR-based Acute
Ischemic Stroke

In order to treat patients with AIS, it is a necessity to find the vo-
lume of salvageable tissue. This volume assessment is based on fixed
thresholds and single imaging modalities. A deep CNN model (37 deep
layers) [73] using nine MR image biomarkers was trained to predict

Fig. 4. Convolution Neural Network (Courtesy of AtheroPoint, CA, USA).

Fig. 5. Fatty Liver Disease US images (Normal Liver: Upper Row, Abnormal: Lower Row (image courtesy: AtheroPoint™)) (Courtesy of AtheroPoint, CA, USA).
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final imaging outcome. Its performance was compared with two other
CNN model. The first is CNN of two convolution layers using nine MR
image biomarkers and the other is a Tmax CNN (two layers) based on
Tmax [74] biomarker. For this experiment, 222 patients were selected.
Out of them, 187 were treated with recombinant tissue-type plasmi-
nogen activator (rtPA). All patients were scanned after symptom onset
in the follow-up. The results are shown in Fig. 7. It is seen that the deep
CNN model gave better visual output then the other CNN models. It
shows that deeper (more number of deep layers) models give a better
output than shallow models. Among two patients A and B, patient A
(age: 58 years) gave no signs of visual lesions which was correctly
predicted by deep CNN model while the other models over predicted.
For patient B (age: 44 years) deep CNN prediction is more accurate.
While comparing performance, deep CNN had better area-under-curve
(AUC) of 0.88 ± 0.12 compared to shallow CNN (AUC: 0.85 ± 0.11)
and Tmax CNN (AUC: 0.72 ± 0.14).

2.4. An application in urology for prostate cancer diagnosis

A patch-based Deep-CNN model is proposed to classify prostate
cancer (PC) and non-cancer (NC) image patches from multiparametric
MR images [75]. In this experiment, the MR image data was collected
from 195 patients and images were aligned and resampled to high re-
solution images. A radiologist with 11 years of experience was em-
ployed to label PC and NC zone in the images and draw a region-of
interest (ROI) around them. The images were pre-processed and aug-
mented using rotation, random shift, random stretching and horizontal
flip. This was done to increase the dataset size as the patient’s cohort
was small. Such physical operations also enable DL models to uncover
important features within the data. The ROI patch was extracted from
all the images. Finally, 159 patients' data (444 ROIs: 215 PC/229 NC)
was used for training, 17 patients' data (48 ROIs: 23 PC/25 NC) was
used for validation and finally 19 patients' data (55 ROIs: 23 PC/32 NC)

Fig. 6. LI- and MA- border by the DL-based system shown in red (arrows at 5 o’ clock) and green (arrows at 11 o’ clock). Gold standard tracings are shown in dotted
yellow. Top row corresponds to low risk, middle row denotes medium risk and bottom row signifies high risk patients. The cIMT error analogous to the two gold
standards was found to be 0.126 ± 0.134mm and 0.124 ± 0.100mm, respectively. The lumen-intima (LI) error with respect to the two gold standards was found to
be 0.077 ± 0.057mm and 0.077 ± 0.049mm, respectively. The media-adventitia (MA) error corresponding to the two gold standards were 0.113 ± 0.105mm
and 0.109 ± 0.088mm, respectively (image courtesy: AtheroPoint™) (Courtesy of AtheroPoint, CA, USA).
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for testing. The Deep CNN model consisted of three blocks followed by a
FCN layer. Each block contained three deep layers. The diagnostic ac-
curacy for the test data was in the form of AUC value was 0.944. The
outputs of each step are shown in Fig. 8.

2.5. A Pulmonology application for respiratory disease prognosis using CT

A DL study was conducted on CT images on chest to classify patients
having chronic obstructive pulmonary disease (COPD) or not. This
study was also poised to predict acute respiratory disease (ARD) events
and mortality [76]. The dataset consisted of 7983 COPD Gene partici-
pants for training and 1000 COPDGene [77] and 1672 ECLIPSE (Eva-
luations of COPD Longitudinally to Identify Predictive Surrogate End-
points) [78] participants for testing. The DL structure consisted of three
deep layers [31]. The c-statistic for the detection was 0.856. The overall
c-statistic for COPDGene and ECLIPSE datasets was 0.64 and 0.55, re-
spectively. The outputs for each f the three layers of the DL model is
shown in Fig. 9.

3. Future of deep learning

3.1. DL in radiology

The impact of DL in industry has been huge [79–90]. The next big
leap of automation using DL is happening in the field of radiology. It is
evident from the fact that maximum publication with respect to DL in
healthcare is happening in medical imaging [91]. The presence of open
source software [92–94] has made it possible for researchers and sci-
entist community to build DL tools with relative ease. One possible
reason for DL success story is lowering of costs of computer hardware
and GPUs [95,96] due to large gaming industry. The usage of GPUs by
DL has brought down the computational time which has led to quick
training and generalization of the DL models. DL has been used in
disease classification [97,98], brain cancer classification [99–101],
organ segmentation [102–108], haemorrhage detection [109,110],
tumor detection [111–116] are some key progresses. All methodologies
showed increase in accuracy then conventional methods.

Fig. 7. DL output results from follow-up scan on Patient A
(Age: 58, male) and Patient B from Deep CNN, Shallow CNN
and TmaxCNN (lesions pointed to by arrows at 7 o’ clock).
Patient A (Age: 44, male) is correctly predicted as having no
lesions by Deep CNN while over-predicted by Shallow CNN
and Tmax CNN. Patient B is correctly predicted by all the CNN
model. However prediction of Deep CNN is better (Reprinted
with permission of the American Thoracic Society. Copyright
[73])).

Fig. 8. Outputs of registration, pre-processing and placement of ROI. The images used were T2-weighted, diffusion-weighted, and apparent diffusion coefficient
images. Lesions in the images are marked by WHITE arrows. Lesions are later characterized by radiologists. CA ROIs are pointed to by RED arrows at 7 o’ clock while
NC ROIs pointed to by arrows at 1 o’ clock. (Permission Pending [75]).
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3.2. Radiology’s future

DL is going is likely to advance medical imaging sciences in the
upcoming future. Hospitals and diagnostic centres are needed to up-
grade their infrastructure and develop their labs. Medical facilities
worldwide must share their databases without compromising the
privacy of patients. These databases must be made available for better
training of the DL models. The quick processing of image data and
availability of reports would enable medical professionals of the future
to make a better and timely medical decision-making. This would help
in real time treatment of patients and help in saving lives. Overall, the
usage of DL in radiology has the potential to improve the health of
individual and the wellbeing of society.

4. The future prospective of radiology using deep learning

4.1. Economy

A radiologist can analyse an average of 200 cases a day [117]. A
powerful tool such as DL can help radiologists to make accurate deci-
sions in short period of time thus helping him to improve quality of
patient’s health and growing the volume at the same time – both locally
and remotely (such as telemedicine [118]).

In the US, 260 million images are processed everyday including
ultrasound, MR and CT images. A hospital can invest 1000 US dollars in
their computational systems to process that many images [119] in a
day. This would decrease the delay in treatment and lower the medical
costs. It is also forecasted that the computer aided diagnosis (CAD)
market powered by DL will generate revenue of 1.9 billion US dollars
[120] by 2022.

4.2. Augmented radiology and DL

As human drivers may become redundant with the arrival of

driverless cars, people are talking about replacement of radiologists by
DL systems backed up by billion dollar medical imaging companies
such as GE and IBM. However, the hybridization of machine and human
intelligence will lead to better prediction model e.g., it has been ob-
served that in a stable, controlled environment statistical models such
as DL will be at least as good as, if not better than humans. In real time,
however, the environment may change rapidly, data may become
noisy, and patterns will become difficult to read. In such situations the
statistical models may not work properly or even may fail to give ac-
curate predictions. In such situations, collective intelligence of both
man and machine will likely be necessary to better prediction accuracy.
Therefore, consensus-based models are needed to be built with equal
participation from both man and machine to develop a better hybrid
prediction model. The value of human intelligence may actually in-
crease where automation is not possible. The application of DL in
radiology will lead to an augmentation of the radiologist’s capabilities,
by combining technology with human intelligence [121–124].

Radiologists are also going to benefit from applications of DL in
picture archiving and communication system (PACS) [125]. DL im-
plementation in PACS will make the availability of images faster, reli-
able and more accurate.

4.3. Further development of DL

It is predicted that DL will aid in the performance of routine and
mundane tasks in radiology while the human will use higher decision-
making to render final judgements. The main features in medical di-
agnosis and prediction using DL techniques will make the consultation
to be more interactive between patients and doctors. This will happen
as the DL systems will be able to provide evidence when clinical deci-
sion to be made is under uncertainty. DL has the potential to develop an
ecosystem where medical services will be provided round the clock
taking all data into consideration i.e., radiology, patient history, bio-
informatics, clinical radiological trials such as retrospective,

Fig. 9. The outcomes of the three layers (pointed to by arrows at 7 o’ clock) of the DL model. Layer 1 output: arrow (a); Layer 2 output: arrow (b) Layer 3 output:
arrow (c) (reproduced with permission).
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prospective or longitudinal. This will lead to better patient care.

5. Challenges and risks in deep learning

There are several ethical and moral concerns with regards to im-
plementation of AIDL in clinical diagnosis process. This can be divided
into three categories: safety, privacy and morality.

5.1. Safety

Medical professionals are guided by the code “first, do no harm”. AI
systems, if employed, will be responsible for safeguarding patients at
their most vulnerable state, with no room for preventable error.
Medical regulatory bodies should ensure that DL systems are employed
following stringent rules ensuring that they are highly robust and ac-
curate. Safety standards should also be time tested and be highly reli-
able.

5.2. Privacy

DL requires training imaging databases. This will require patient
information to be stored in some secure server. Any breach in security
will lead to loss of privacy of data. Precautionary measures should be
taken and laws should be in place to protect the privacy of patients
before allowing DL. Data transmission protocols must be tightly secured
and only transmitter or receiver of the image data can truly extract the
image information only if they possess the authority.

5.3. Legality

There is a legal issues related with application of DL technologies in
healthcare. The foremost is to whom legal liability should be assigned if
DL makes a wrong judgement. It is possible that the solution may in-
volve some shared liability between the human authority responsible
for design of the DL model and the physician overseeing the application
of a given DL technology.

6. Conclusion

In this study we had a broad overlook over the various facets of DL
in the field of radiology. We reviewed the concept of DL, its evolution,
and presented various DL applications in radiology. We briefly stated
the present scenario regarding application of DL in radiology. We also
outlined the future potential and its risks in DL pertaining to health
care. When properly utilized, DL has the potential to increase the value
to the radiologist in the delivery of healthcare by improving patient’s
outcomes while reducing costs.
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Appendix A

In this review, we have collected information on current research on
DL applications in several fields such as genomics, imaging and signal

processing. Initially, we looked using the keyword “deep learning”,
“convolution”, “healthcare” using search engines such as Google
Scholar, ScienceDirect, PubMed, SCOPUS and IEEE databases, however
this search was inconclusive as it opened up almost all deep learning
related works. We therefore modified our search terms to include
imaging modalities such as “MRI”, “CT”, and “Ultrasound”. Within
MRI, different variants of MRI were searched: magnetic resonance
spectroscopy and functional MRI. Similarly for CT, positron emission
tomography (PET), single-photon emission computed tomography
(SPECT), and contrast CT. Further, different versions of ultrasound
were also searched i.e., Doppler, A-mode, B-Mode ultrasound general-
ized ultrasound. Specific keywords were tried, such as translational
bioinformatics, medical imaging, pervasive sensing, medical infor-
matics and public health. We segregated the relevant research outputs
as per the type of modality i.e., “MRI”, “CT”, and “Ultrasound”. Inside
each segregated class, we further categorized each paper as their organ
or disease type. This search went on iteratively bimonthly. We had
collected over 150 articles during this process. We focused on medical
imagery in the deep learning paradigm for the review paper and se-
lected few papers published recently based on organ types to assess the
work done in various physiologies.”
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